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1. INTRODUCTION

Stem cells have generated a great deal of excitement as a potential source
of cells for transplantation because of their ability to self-renew and differ-
entiate into functional cells of various tissues (1–3). Stem cells can be
derived from multiple stages of development as well as numerous adult tis-
sues. Adult tissues are an attractive and readily accepted source of stem
cells because such cells have demonstrated efficacy in multiple types of cel-
lular therapeutics (4,5) and can be directly obtained from individual patients,
thereby eliminating the difficulties associated with tissue rejection. Despite
this enormous potential, the use of adult stem cells has been limited, prima-
rily because of the inability to identify these rare cells from the heteroge-
neous tissue populations (6) and to expand populations of cells that retain
stem cell properties in vitro.

Historically, many adult tissues were thought incapable of regeneration.
However, cells with regenerative capability have been detected in most adult
tissues, including liver (7–9), intestine (10), retina (11), skin (12), muscle
(13), neural (14), mammary glands (15), and others. Although extensive
documentation of the properties of many of these cells with respect to their
stem cell characteristics (i.e., individual cells with the capacity for extended
self-renewal and multilineage differentiation) is under way, taken together,
it is clear that adult tissues may provide an untapped source of cells for
cellular therapies.

Numerous studies suggest that the proliferative and differentiative
potential of tissue-specific stem cells changes during ontogeny (16–18) and
is dependent on intrinsic factors such as telomere shortening (19) and genetic
stability (20). The ability to measure changes in the developmental potential
of stem cells is limited by the inability to fingerprint such cells genetically
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(21) and by the properties of the assays used to detect them (such as tissue
homing [22]). Despite these limitations, it is well recognized that adult stem
cells in vivo have a proliferative potential much beyond the lifespan of the
organism. For example, a single hematopoietic stem cell (HSC) not only can
reconstitute hematopoiesis in primary recipients by contributing to both lym-
phoid and myeloid cells (23,24), but also can reconstitute secondary and
tertiary hosts (25–27). Although less-rigorously analyzed (to a large extent
because of the lack of transplantation assays based on tissue repopulation),
adult stem cells from other tissues also have extensive regenerative capaci-
ties (10,12,13). Despite the apparent intrinsic capability of adult stem cells
for extensive self-renewal, efforts to grow these cells in culture have failed
to recapitulate their in vivo potential.

The interest in adult stem cells has been elevated by recent reports that
some adult stem cells, or stem cell populations, may be capable of crossing
lineage boundaries by differentiating into cells with unexpected devel-
opmental properties. For example, bone marrow-derived cells have been
reported to give rise to different types of muscle cells, such as from
unfractionated bone marrow (28–30) or enriched HSC-like cells (31,32);
liver cells, such as from unfractionated rodent (33,34) and human bone mar-
row (35,36), or enriched HSC-like cells (34,37); lung (38) and neuronal
cells, including neurons detected in vivo (39,40) and in vitro (41,42); and
astroglia and microglia (43,44). Strong evidence of the multiorgan generat-
ing capability of bone marrow-derived stem cells has been demonstrated in
the ability of a single cell to reconstitute hematopoiesis in primary and sec-
ondary recipients as well as to differentiate into apparently functional epi-
thelial cells of the liver, lung, intestine, and skin (45).

Stem cells not derived from bone marrow may also have developmental
capacities outside their tissue of origin (46,47), although recent reports have
led investigators to question many of these early results (48–51). Even with
the uncertainties regarding the intrinsic potential of adult stem cells, the abil-
ity of cells of one tissue to give rise to differentiated cells of another tissue
(either because of broader differentiation capacity or because the tissue in
question contains multiple types of stem cells) may be of great therapeutic
potential and could provide alternative adult stem cell sources that are
readily accessible (i.e., peripheral blood, skin, or fat-derived stem cells).

This chapter highlights some of the main bioengineering challenges in
the development of adult stem cell-based therapies also; methods to control
the self-renewal and differentiation of adult stem cells and to create clini-
cally relevant bioprocesses are discussed. Particular emphasis is given to
analyzing these techniques in the context of well-established adult stem cell
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systems and the effect of the cellular microenvironment on the responses of
such cells.

2. STEM CELL MICROENVIRONMENT

In vivo, stem cells reside in a complex microenvironment characterized
by their local geometry (structural and physicochemical), by specific types
of surrounding tissue cells, and by soluble and extracellular matrix (ECM)
components (52,53). The properties of this microenvironment are dynamic,
depend on the specific tissue, and are affected by factors such as vascular-
ization and loading (Fig. 1). Importantly, the analysis and understanding of
the role of the microenvironment on stem cell responses should be moti-
vated by more than the desire simply to mimic the in vivo milieu. The in
vivo microenvironment dynamically exposes cells to positive and negative
regulators of specific stem cell responses; the selective application of these
regulatory mechanisms during in vitro culture will ultimately depend on
the type of cell response to be elicited and the ability to control dominant
(i.e., response-determining) culture parameters.

2.1. Cytokines and Growth Factors

Cytokines and growth factors are important regulators of the tissue
microenvironment. They are produced by stem cells or their neighboring
cells in an autocrine or paracrine manner and often combine with other

Fig. 1. Adult stem cell niche. The microenvironment of adult stem cells is regu-
lated through a complex network of paracrine and autocrine soluble signals as well
as cell–cell and cell–ECM bound signals. Physicochemical parameters such as pH,
temperature, oxygen, perfusion, and mechanical stimuli can also influence cell fate
decisions.



292 Khademhosseini and Zandstra

microenvironmental components to elicit nonlinear responses, for instance,
threshold-based (54) or synergistic responses. Due in part to difficulties in
the quantitative identification of most tissue-specific stem cells and their
immediate derivatives, defining cytokine networks that allow for controlled
self-renewal and differentiation of these cells has been challenging. So far,
most experiments have studied the response of putative stem cells to indi-
vidual or limited numbers of combinations of cytokines. Few studies have
rigorously analyzed and optimized the effect of multiple cytokines, as well
as interactions between these cytokines, on stem cell responses.

Factorial experiments are one approach to overcome some of these limi-
tations and quantitatively analyze the effect of cytokine interactions on stem
cell responses (18,54–58). By analyzing complex interactions between vari-
ous cytokines, relationships commonly missed by conventional dose–
response approaches are detectable. For example, with respect to HSCs, this
type of analysis has been helpful in defining self-renewal and differentiation
factors (59), a threshold cytokine concentration effect on self-renewal and
differentiation (54), and changes in cell’s cytokine responsiveness with
ontogeny (18).

These and other results (see ref. 60 for a review) have led to the identifi-
cation of molecules thought important for the regulation of HSC fate and
have led to the development of feeder-free (and serum-free) culture sys-
tems. Feeder-free cultures provide more control in studying the effects of
specific signals and are desirable in clinical applications. Briefly, these stud-
ies have identified a “cocktail” of cytokines containing stem cell factor
(SCF), flt-3 ligand (FL), and interleukin 11 (IL-11) family of cytokines (61)
(with or without the addition of thrombopoietin, TPO) (62) and revealed
much about the mechanisms of cytokine action on stem cells.

For example, even though SCF has been shown to be critical for the main-
tenance and expansion of HSCs (63), it cannot by itself maintain HSCs in
vitro (64). SCF acts synergistically with various growth factors, including
TPO, FL, and IL-11, to induce proliferation and maintenance of myeloid
and lymphoid progenitors (65). FL has also been shown to synergize with a
wide variety of hematopoietic cytokines (in particular, SCF and the IL-11
family of cytokines) to stimulate the proliferation, self-renewal, and differ-
entiation of HSCs (66).

Despite these results, a definitive cocktail that leads to reproducible
expansion of HSCs has not yet been developed; illustrating the underlying
complexity in cytokine networks (60) and pointing to the need to develop
more effective in vitro culture technologies.
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Significant progress has recently been made with respect to growing other
types of adult stem cells in cytokine-supplemented media. For example, cells
with characteristics of neural stem cells (NSCs) have been expanded as
neurospheres in well-defined culture conditions (67). Typically, epithelial
growth factor (EGF) (68,69) and fibroblast growth factor 2 (FGF-2) (70–72)
are used to propagate the early tissue dissociates containing NSCs. The pres-
ence of these growth factors seems to prevent the differentiation of NSCs
and allows their continual proliferation. These properties have allowed the
creation of bioreactors, which have been used to expand neurosphere-
forming cells (73).

Multipotential adult stem cells have been isolated from human and murine
skin (74). Cultures derived from these cells plated clonally and maintained
for many passages at low cell densities generated both neuroectodermal
(neurons and glia cells) and mesodermal (smooth muscle and adipocytes)
tissues. Interestingly, the propagation of these cells seems to depend, among
other things, on the addition of EGF and FGF to the culture, conditions simi-
lar to those defined for NSCs (68,75). It remains to be seen whether these
so-called multipotent adult progenitor cells can be isolated directly from
specific tissues or arise as a product of in vitro culture.

In addition to identifying the types of growth factors and cytokines
important in the control of adult stem cell growth and differentiation, it is
becoming well recognized that their (relative) concentrations (56), mode of
presentation (76), and order of application (77) also play an important role
in eliciting particular responses from stem cells. The significant increase in
the complexity of experiments investigating these parameters clearly indi-
cates the need for quantitative, systems biology approaches as a tool in ana-
lyzing such interactions. These types of approaches have been used to
analyze the cross-talk between two independent ligand-activated signaling
pathways (78) and may one day be useful for the analysis of individual can-
didate stem cells (79,80).

To study the “effective concentration” of growth factors present in the
microenvironment of an individual cell, it is necessary to understand impor-
tant mediating steps, such as the transport properties of the ligand in the
cellular vicinity, the complexities of ligand–receptor binding interactions,
the role of ECM binding on ligand availability and ligand–receptor complex
internalization (81), and the downstream consequences of signaling activa-
tion (82). Clearly, to signal through a receptor, a ligand must reach its recep-
tor on the cell membrane. This step could provide a significant barrier to
signaling and is dependent on a number of parameters, such as the degrada-
tion and diffusion rates of the soluble ligand, ligand interactions with the
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ECM molecules, mixing and turbulence of the surrounding fluid, and other
parameters in the microenvironment. Bioengineering approaches can be
used to engineer proteins with modified stability and diffusive properties
(83,84) to optimize transport to the cells. Protein engineering approaches
have also been used to design and select for (85) proteins with modified
affinity for their particular receptor (81,86).

Significant deviations in supplemented growth factor concentrations can
occur throughout the culture period as a result of receptor–ligand complex
internalization and degradation by cells (54,81,87). For example, a cell-
associated depletion of growth factors and cytokines in both hematopoietic
(54) and embryonic stem (ES) cell (88) cultures has been observed. Signifi-
cant progress has been made in understanding and manipulating the mecha-
nisms that underlie ligand possession by cells (89). This information has
been applied to optimize biological responses of T cells to engineered and
mutant IL-2 proteins (87,90). These strategies, along with protein engineer-
ing techniques (91,92), can also be used to develop receptor–ligand com-
plexes that dissociate in the acidic environment of the endosome, thus
allowing for higher ligand recycling rates (93), an approach that has been
shown to enhance the “effective” concentration of the ligand in the vicinity
of the cell greatly (89,93) and may lead to decreased exogenous require-
ments of cytokines and growth factors.

Another approach to growth factor supplementation that holds significant
promise for the modulation of stem cell responses is the design of ligand–
receptor complexes that cannot be internalized and thus may allow the
delivery of controlled and sustained stimulation to the cells. This can be
achieved by immobilizing proteins to various surfaces and scaffolds. To
achieve this goal, techniques ranging from direct protein adsorption to covalent
linkage of aldehyde-containing surface groups to amine base side chains, as
utilized in protein–protein interaction arrays (94), can be used. These simple
strategies, however, may be limited because nonspecific adsorption of serum
proteins may “mask” the immobilized proteins. To overcome this potential
limitation, a linking molecule (such as polyethylene oxide, PEO) may be
used to tether the growth factor to a surface or ECM. This approach has been
successful in covalently binding EGF to PEO (95), for which the tethered
EGF elicited the deoxyribonucleic acid (DNA) synthesis of hepatocytes at
rates similar to that of its soluble counterpart and significantly greater than
that of adsorbed EGF at comparable surface concentrations. Significant chal-
lenges exist in the implementation of these technologies, both in terms of
the biomaterial design strategies and in terms of the underlying biological
mechanisms that need to be mimicked (96–101).
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2.2. Cell–Cell and Cell–Extracellular Matrix Interactions

In vivo cells are typically in direct contact with surrounding cells and
ECM. ECM is a dynamic assembly of interacting molecules that recognizes
and regulates cell function in response to endogenous and exogenous stimuli
(102). ECM is produced by cells and consists of collagens, proteoglycans,
adhesive glycoproteins, and glycoasaminoglycans and associated bound pro-
tein modulators of cell function. Along with providing a framework in which
cells form tissues, ECM directly modulates cell attachment, shape, morphol-
ogy, migration, orientation, and proliferation. ECM also serves as a reser-
voir for various growth factors. It has been proposed that the existence of
matrix is essential for the activity of many growth factors (such as hepato-
cyte growth factor [HGF], transforming growth factor-β [TGF-β], and acidic
and basic FGF) (103). The complex combination of signals provided by the
ECM to adult stem cells likely provides the cell with information unique to
the tissue of origin and is important for the regulation of stem cell self-
renewal, differentiation, and homing.

In the bone marrow, HSC interactions with adhesion molecules (e.g.,
CD34, stem cell antigen 1 [Sca-1], selectins, and various integrins) on the
vascular endothelium have been reported to aid in cell homing during
hematopoietic reconstitution experiments and to regulate cellular traffick-
ing during homeostasis (for review, see ref. 104). Cell adhesion molecules
have also been shown to be present in other types of stem cells. For example,
mesenchymal stem cells (MSCs) were first isolated based on their adher-
ence (albeit poorly characterized) to tissue culture surfaces (105).

Cell–cell and cell–ECM interactions have been shown to greatly influ-
ence the self-renewal and differentiation of stem cells (106,107). An
example of the importance of cell–cell and cell–matrix interactions in the
modulation of adult stem cell fate is the maturation of intestinal crypt stem
cells (10,108–113). These cells give rise to epithelial cells that line the gas-
trointestinal tract and typically lie in the base of test-tube-like structures
(114). As cells move toward the luminal pole, they go through a series of
differentiation and proliferation steps so that the pole is occupied by short-
lived functional cells. Mathematical (115) and experimental (108) studies
suggested that as few as four to six stem cells are sufficient in maintaining
homeostasis for each crypt. Once these cells leave a stem cell niche within
the base of the structure, they are induced to differentiate. This differentia-
tion is thought to be regulated by a variety of signals, including cell–cell and
cell–ECM signals.
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A number of ECM proteins and receptors have been reported to be
expressed differentially in the stem cell region of the crypt (116). However,
even though numerous molecules (such as Notch) mediated by cell–cell and
cell–ECM interactions are suspected, the molecular mechanisms that induce
this behavior remain elusive (for review, see ref. 117). Further insight into
understanding such signals will facilitate the design of culture technologies
that mimic critical aspects of the in vivo microenvironment and facilitate
better control over stem cell responses in vitro (Fig. 2).

2.3. Physicochemical Parameters
Physicochemical properties such as pH and oxygen and glucose concen-

trations are another important aspect of the stem cell niche. Changes in such
parameters have been shown to be critical in both embryonic development
and ES cell differentiation (118,119), as well as adult stem cell regulation
(120). Low oxygen concentration has been linked to the activation of tran-
scriptional factors such as hypoxia-inducible factor (121), which in turn
regulates the expression of signaling molecules, such as erythropoietin and
vascular endothelial growth factor (VEGF), cytokines that influence stem
and progenitor cell behavior. In hematopoietic precursors, low oxygen ten-

Fig. 2. Bioengineering methods to control, mimic, and analyze stem cell niche.
A number of engineering approaches have been developed to control the immedi-
ate microenvironment of adult stem cells. These techniques aim to control the inter-
actions between tissue stem cells and stimuli selected for their potential role in the
design of stem cell-based bioprocesses.
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sion increases the size and frequency of hematopoietic colonies in semisolid
media (122,123).

However, the exact role of oxygen in the development of HSCs is yet to
be determined, let alone the role of oxygen in the function of other tissue-
derived stem cells. For example, it has been observed that, with low oxygen
concentrations, HSC and progenitor numbers seem to be maintained
(124,125), whereas HSC expansion has been shown to occur at higher oxy-
gen concentrations (126,127). For neurosphere-forming cells, low oxygen
concentrations inhibit cellular proliferation (73).

In addition, it has been demonstrated that oxygen tension is also impor-
tant in the regulation of MSCs (128,129). These studies suggested that MSC
proliferation and myogenic and bone differentiation are enhanced in physi-
ological oxygen concentrations; higher oxygen concentrations induce
adipocyte differentiation.

Clearly more research is required to completely understand the effects of
oxygen on progenitor vs more differentiated cell populations. Different tis-
sue microenvironments are comprised of widely varying physicochemical
properties, and these may play a direct or indirect role in the observed func-
tional differences between cells seeded in different tissues.

Another microenvironmental cue that may influence the in vivo and in
vitro responses of stem cells is mechanical stimuli. It has long been known
that mechanical forces play an important role in the development and main-
tenance of vascular, muscle, and bone tissues (130–132). Mechanical stimuli
may initiate mechanotransductive signaling pathways that are still largely
unresolved (133). The effect of these forces on the differentiation of stem
cells is under study. For example, compressing marrow-derived stromal cells
thought to contain MSCs encourages bone development; stretching MSCs
immobilized in a matrix encourages tendon and cartilage formation (134).
However, the mechanisms by which mechanical stimuli affect the differen-
tiation and self-renewal of mesenchymal or other adult stem cells largely
remain to be determined.

3. MODELS OF STEM CELL BEHAVIOR

The design and implementation of models predictive of cell responses
should facilitate the rapid investigation of a large number of “experimental”
conditions and lead to a more in-depth understanding of the biological
mechanisms that control stem cell behavior. Numerous models have been
developed to describe the behavior of stem cells and to predict self-renewal
and differentiation of these cells. In fact, mathematical modeling of stem
cell behavior is as old as the concept of stem cells (135).
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Most established models have typically tried to develop an understanding
of the way that stem cells respond to changes in the cellular microenviron-
ment by imposing either stochastic or deterministic constraints onto the
results of in vitro and in vivo experiments. Significant evidence exists that
both stochastic and directive mechanisms play important roles in the regula-
tion of stem cell responses, and that the particular mechanism (i.e., thresh-
old-based responses; see ref. 136) used may be dependent on the tissue
system/cellular microenvironment.

For example, in hematopoiesis, several studies suggest that exposure to
growth factors may not be obligatory for the differentiation of primitive
cells, and that at least under certain conditions, the identity of the differenti-
ated cell population may be intrinsically determined (137). Particularly
interesting in this regard is the recent demonstration that coexpression of
multiple lineage-restricted genes precedes commitment in multipotent pro-
genitors (138–141). This multilineage “priming” process is consistent with
the flexibility in the gene expression profiles seen during osteoprogenitor
development and implies that the commitment of a multipotent cell to a
particular pathway may reflect the stabilization of a particular subset of
expressed genes (142). The stabilization process may occur in a stochastic
manner in the absence of a particular instructive signal. Conversely, the com-
mitment of an undifferentiated cell may proceed through an instructive sig-
nal that stabilizes a particular set or subset of expressed transcription factors.
Although it is not clear whether all adult stem cell types utilize the same under-
lying mechanisms for the control of their responses, many in vitro studies sup-
ported the existence of this two-level (stochastic in the absence of signal,
directive in the presence of signal) regulatory mechanism (138,143–146).

The above-described low-level expression of multiple transcription fac-
tors may also be at the root of at least some stem cell plasticity phenomena
(147). In this case, plastic stem cells may also express (either “stochasti-
cally” or as a result of ligand-mediated upregulation) transcription factors
associated with cells of other tissues, and exposure to particular tissue micro-
environments may directly or indirectly (through survival mechanisms) elicit
this novel differentiation capacity.

Mathematical descriptions of stochastic differentiation mechanisms have
typically utilized Monte Carlo simulations to mimic the probabilistic nature
of stem cell responses. For example, Till et al. found that their experiments
on colony-forming unit spleen (CFU-S) cell self-renewal were best
described in computer simulations when the probability of self-renewal was
fixed at 0.6 (135). They also explained the colony size distributions using
the same approach, although others have suggested that heterogeneity in the
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transplanted population is also consistent with such differences (146). Since
then, the stochastic models have been extended to the hematopoietic pro-
genitor cells (148,149), NSCs (150–152), and intestinal crypt stem cells
(112,115).

Deterministic models typically incorporate external conditions to derive
kinetic data that describe the growth (and differentiation) rates of popula-
tions of cells. These models have been used to explain the ex vivo expansion
of hematopoietic cells (153). For example, Peng et al. developed a kinetic
description of single-lineage hematopoietic cell expansion based on self-
renewal responses to cytokine supplementation, the growth rates of differ-
ent progenitor cell populations, and mature cell death (154). The model is
consistent with experimental observations of cytokine-supplemented
hematopoietic cultures (154) and predicted a self-renewal probability of 0.62
to 0.73 under these conditions.

Mackey and colleagues used deterministic modeling approaches to
develop multicompartment models to reveal control mechanisms that may
be at the root of some types of hematopoietic disease (155,156). Stem cell
growth has also been mathematically described by defining cell growth in
terms of the proliferation responses of subpopulations of cells (157), in some
cases taking into account symmetric and asymmetric division by defining
differentiation as a state that is attained after a certain number of symmetric
mitotic cycles have occurred (158). Although stochastic and deterministic
models utilize different approaches, both can be applied and fit to experi-
mental data (and thus are somewhat limited in their ability to provide new
insight into the mechanisms that regulate stem cell responses).

Using ES cells as a model stem cell system, we are developing novel
models that incorporate the known variability in receptor expression
between individual cells into a deterministic cell population-based model
(136). This generalized model illustrates how quantitative variations in
ligand–receptor interactions, arising from interactions of the cell with its
microenvironment, can result in alteration in cell fate choices. Our approach
is distinct from stochastic models of stem cell differentiation control, which
typically assume that cell fate processes are random and are best described
by statistical probability distributions. This comprehensive approach, which
attempts to incorporate molecular events in the description of macroscopic
cellular behavior (i.e., ligand concentration and receptor expression to gen-
erate predictions of self-renewal) should be valuable to adult stem cell mod-
els (55,88,136).

To be useful, mathematical models should not only be consistent with the
observed data, but also be able to predict new experimental observations
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and to determine system-controlling parameters. Statistical models that aim
to analyze stem cell gene expression and to correlate such information with
stem cell hierarchy will also be useful in revealing common mechanisms
between stem cell types. We have started to explore such an approach on
clones of osteoblast progenitors to determine which genes are expressed as
they develop into mature bone. Our analysis indicated that the adult pro-
genitor cells can use several developmental routes to get to the same end
stage (142). This unexpected plasticity in the genetic paths used to generate
the same stable differentiated state may likewise be a property of multiple
stem cell systems. The modeling of highly complex molecular interactions
and gene regulatory networks has already been successfully applied to pre-
dict system behavior in intracellular signaling networks comprised of hun-
dreds of components (159–162). The application of these and other
approaches to stem cell systems should prove fruitful.

4. DEVELOPING SCALABLE STEM CELL BIOREACTORS

In addition to developing strategies to control and manipulate the cellular
microenvironment, bioengineers must devise bioprocesses to implement this
microenvironmental control at a clinically relevant scale. For some stem
cell-based applications, current bioreactors must be scaled up to industrial
size units (>10 L), and others (such as purified HSC) may require much
smaller volumes (i.e., <100 mL); each poses significant process control chal-
lenges. Bioreactors can be designed with two goals: generation of large
quantities of differentiated cells and expansion of transplantable stem cells.
The former may find their implementation in the treatment of acute disease
and injury (such as acute liver failure or burns), and the latter may be use-
ful for the treatment of chronic disorders (such as diabetes or gene therapy
for sickle cell anemia). A number of culture systems have been developed for
the production of stem cell-based therapeutics. These include stirred or
attachment-based culture techniques (163).

Stirred cultures have a number of advantages, such as scalability, culture
homogeneity, and simplicity (163). Therefore, parameters such as oxygen
tension, cytokine concentration, and serum components may be easily regu-
lated in these cultures (164–166). Stirred bioreactors have been successfully
used to culture hematopoietic (164), neural (73), and bone marrow popula-
tions capable of reading out as fibroblast and bone progenitors (MSCs) adult
stem cells (165). Suspension culture systems may also be useful for control-
ling the ratios between differentiated and undifferentiated cells during in
vitro culture. In addition, inhibitory signals, generated by the differentiated
progeny (reviewed in ref. 60) may regulate the yield of stem cells in such
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cultures. Mathematical models (167) have predicted and experiments have
confirmed (168) that the control of this differentiated subpopulation dynamic
can be used to influence culture output (168).

Despite the simplicity of stirred cultures, these cultures may not be suit-
able for all types of adult stem cells. For example, epithelial progenitor cells
may require three-dimensional (3-D) signals for expansion or directed dif-
ferentiation. In such cases, the use of culture conditions that enhance adhe-
sion-based interactions may be important. Some investigators have
combined these requirements with suspension culture systems, for example,
using simulated microgravity conditions that result in the maintenance of in
vivo-like gene expression (169) and cellular organization (170–173).

Adhesion-based cultures are typically used to create bioprocesses that
have characteristics of the in vivo microenvironment. These may involve
the use of scaffolds or beads as the templates onto which progenitor cells
grow (174) and often utilize feeder or stomal cells as delivery vehicles for
stimulatory signals (thereby overcoming the difficulties associated with
insufficient knowledge of factors that influence stem cell self-renewal and
differentiation). Bioengineering approaches for positioning anchorage-
dependent cells on surfaces with control over size and spatial arrangements
(cellular “micropatterning”; see refs. 175–178) can create a high level of
complexity in the cocultures and may be useful for the analysis of stem cell
behavior under defined conditions and geometries.

These and other microfabrication techniques (reviewed in ref. 179) may
become important tools in creating bioreactors that mimic in vivo condi-
tions. Soft lithography and photolithography techniques have become widely
available tools for biological applications (179). The particular advantage of
these techniques is evident in biological applications that require length
scales of 10 µm or greater (180).

Microfluidics may be used in combination with these techniques to con-
trol the delivery of cytokines and growth factors to cells (179). Microfluidic
systems take advantage of the laminar flow of fluids within narrow channels
(<100 µm) to allow for the formation of concentration gradients of soluble
factors and therefore allow for direct control of cell responses at length scales
that are developmentally relevant (179,181).

Microfabricated bioreactors may also be used to study and expand stem
cells under perfused conditions (182,183). Such cultures maintain differen-
tiated phenotypes of hepatocytes in vitro (183); however, their feasibility in
expanding stem cells has yet to be determined.

A critical property of ideal stem cell bioreactors is the ease of periodic
medium replacement. Replenishing medium not only eliminates nutrient and
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cytokine depletion and end product inhibition, but also allows the transient
presentation of signals specific to the differentiation stage of the cells. The
use of such signaling techniques has been particularly important in inducing
the differentiation of ES cells into hepatocytes by exposing the cells to tran-
sient conditions that mimic the embryonic development (184). Such tech-
niques may provide a valuable tool in adult stem cell therapies. Furthermore,
metabolic properties such as cell-specific glucose consumption and lactate
production increase and inhibitory factors such as medium acidification
decrease in fresh medium (185).

5. CONCLUSIONS

To utilize adult stem cells fully in cell therapy applications, understand-
ing the molecular cues that regulate their behavior is crucial. The lack of
suitable in vitro models has hindered stem cell research and limited much
experimentation to in vivo models. The challenge is to design controlled
systems that will deliver proper microenvironmental cues at optimal doses.
Bioengineering approaches, including the modeling, analysis, and manipu-
lation of microenvironmental cues, as well as the design of novel bioreactors,
should facilitate the generation of therapeutically significant amounts of
stem cells. Differentiated human tissues may provide a basis for the detailed
understanding of the molecular mechanisms that control stem cell responses.
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